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Generic linear regression model
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Model:

yi = w0 h0(xi) + w1 h1(xi) + … + wD hD(xi) + εi

=      wj hj(xi) + εi

feature 1 = h0(x) … e.g., 1

feature 2 = h1(x) … e.g., x[1] = sq. ft.

feature 3 = h2(x) … e.g., x[2] = #bath
or, log(x[7]) x[2] = log(#bed) x #bath

…

feature D+1 = hD(x) … some other function of x[1],…, x[d]
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Measuring loss

Loss function:

L(y,fŵ(x))

Examples: (assuming loss for underpredicting = overpredicting)

Absolute error: L(y,fŵ(x)) = |y-fŵ(x)|

Squared error: L(y,fŵ(x)) = (y-fŵ(x))2
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actual 
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Fit data with a line or … ? 
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What about a quadratic function?
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Even higher order polynomial

©2018 Emily Fox

square feet (sq.ft.)

p
ri

c
e
 (

$
)

x

y

I can 

minimize 

your RSS



STAT/CSE 416: Intro to Machine Learning

Assessing the loss

Part 1: Training error

©2018 Emily Fox



STAT/CSE 416: Intro to Machine Learning9

Define training data
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Define training data
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Example:

Fit quadratic to minimize RSS
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Compute training error

1. Define a loss function L(y,fŵ(x))

- E.g., squared error, absolute error,…

2. Training error 

= avg. loss on houses in training set

=         L(yi,fŵ(xi))

©2018 Emily Fox

fit using training data
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Example: 

Use squared error loss (y-fŵ(x))2
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Training error (ŵ) = 1/N *

[($train 1-fŵ(sq.ft.train 1))
2

+ ($train 2-fŵ(sq.ft.train 2))
2

+ ($train 3-fŵ(sq.ft.train 3))
2

+ … include all 

training houses]
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Training error vs. model complexity
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Training error vs. model complexity
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Training error vs. model complexity
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Training error vs. model complexity
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Training error vs. model complexity
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Assessing the loss

Part 2: Generalization (true) error
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Generalization error

Really want estimate of loss over all possible (    ,$) pairs
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Lots of houses

in neighborhood,

but not in dataset
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Distribution over houses

In our neighborhood, houses of what # sq.ft. (     ) 

are we likely to see?
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square feet (sq.ft.)
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Distribution over sales prices

For houses with a given # sq.ft. (     ), what house prices $
are we likely to see?
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Generalization error definition

Really want estimate of loss over all possible (    ,$) pairs

Formally:

generalization error = Ex,y[L(y,fŵ(x))]

©2018 Emily Fox

fit using training data

average over all possible

(x,y) pairs weighted by 

how likely each is
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Generalization error vs. model complexity
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Generalization error vs. model complexity
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Generalization error vs. model complexity
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Generalization error vs. model complexity
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Generalization error vs. model complexity
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Generalization error vs. model complexity
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Generalization error vs. model complexity
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Assessing the loss

Part 3: Test error
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Approximating generalization error

Wanted estimate of loss over all possible (    ,$) pairs

©2018 Emily Fox

Approximate by looking at

houses not in training set
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Forming a test set

Hold out some (     ,$) that are not used for fitting the model
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Training set

Test set
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Training set

Test set

Proxy for “everything you 

might see”

Hold out some (     ,$) that are not used for fitting the model

Forming a test set
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Compute test error

Test error 

= avg. loss on houses in test set

=                 L(yi,fŵ(xi))
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fit using training data# test points

has never seen 

test data!
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Example: 

As before, fit quadratic to training data
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Example: 

As before, use squared error loss (y-fŵ(x))2
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Test error (ŵ) = 1/Ntest *

[($test 1-fŵ(sq.ft.test 1))
2

+ ($test 2-fŵ(sq.ft.test 2))
2

+ ($test 3-fŵ(sq.ft.test 3))
2

+ … include all 
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Training, true, & test error vs. model complexity
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Training/test split
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Training/test splits
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Training set Test set

how many? how many?vs.
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Training/test splits
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Too few ŵ poorly estimated

Training 

set
Test set
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Too few  test error bad approximation of true error

Training/test splits
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Training set
Test 

set
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Training/test splits

Typically, just enough test points to form a reasonable estimate 

of true error

If this leaves too few for training, other methods like 

cross validation (will see later…)

©2018 Emily Fox

Training set Test set
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3 sources of error + 

the bias-variance tradeoff
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3 sources of error

In forming predictions, there are 3 sources of error:

1. Noise 

2. Bias

3. Variance

©2018 Emily Fox
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Data inherently noisy
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Bias contribution

Assume we fit a constant function
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Bias contribution

Over all possible size N training sets,
what do I expect my fit to be?
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Bias contribution

Bias(x) = fw(true)(x) - fഥw(x)
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Variance contribution

How much do specific fits vary from the expected fit?
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Variance contribution

How much do specific fits vary from the expected fit?

©2018 Emily Fox

square feet (sq.ft.)

p
ri

c
e
 (

$
)

x

y

fŵ(train1)

fŵ(train2)

fŵ(train3)

fഥw



STAT/CSE 416: Intro to Machine Learning52

Variance contribution

How much do specific fits vary from the expected fit?
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Variance of high-complexity models

Assume we fit a high-order polynomial
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Variance of high-complexity models

Assume we fit a high-order polynomial
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Variance of high-complexity models

©2018 Emily Fox

square feet (sq.ft.)

p
ri

c
e
 (

$
)

x

y

high complexity



high variance

fഥw



STAT/CSE 416: Intro to Machine Learning56

Bias of high-complexity models
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Bias-variance tradeoff
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Error vs. amount of data
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Summary of 

assessing performance
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What you can do now…

• Describe what a loss function is and give examples

• Contrast training and test error

• Compute training and test error given a loss function

• Discuss issue of assessing performance on training set

• Describe tradeoffs in forming training/test splits

• List and interpret the 3 sources of avg. prediction error

- Irreducible error, bias, and variance
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